#include #include #include #define V 6 // Number of vertices in the graph // Find the vertex with the minimum distance value int minDistance(int dist[], bool visited[]) { int min = INT_MAX, min_index = -1; for (int v = 0; v < V; v++) { if (!visited[v] && dist[v] <= min) { min = dist[v]; min_index = v; } } return min_index; } // Print the path recursively void printPath(int parent[], int j) { if (parent[j] == -1) { printf("%d", j); return; } printPath(parent, parent[j]); printf(" -> %d", j); } // Print shortest distances and paths void printSolution(int dist[], int parent[], int src) { printf("Vertex\t Distance\tPath"); for (int i = 0; i < V; i++) { printf("\n%d -> %d \t %d\t\t", src, i, dist[i]); printPath(parent, i); } printf("\n"); } // Dijkstra’s algorithm void dijkstra(int graph[V][V], int src) { int dist[V]; // Shortest distances bool visited[V]; // Processed vertices int parent[V]; // To store shortest path tree // Initialize distances, visited[] and parents for (int i = 0; i < V; i++) { dist[i] = INT_MAX; visited[i] = false; parent[i] = -1; } // Distance of source from itself is 0 dist[src] = 0; // Find shortest path for all vertices for (int count = 0; count < V - 1; count++) { int u = minDistance(dist, visited); visited[u] = true; for (int v = 0; v < V; v++) { if (!visited[v] && graph[u][v] && dist[u] != INT_MAX && dist[u] + graph[u][v] < dist[v]) { dist[v] = dist[u] + graph[u][v]; parent[v] = u; } } } printSolution(dist, parent, src); } int main() { // Example graph represented as an adjacency matrix int graph[V][V] = {{0, 4, 0, 0, 0, 0}, {4, 0, 8, 0, 0, 0}, {0, 8, 0, 7, 0, 4}, {0, 0, 7, 0, 9, 14}, {0, 0, 0, 9, 0, 10}, {0, 0, 4, 14, 10, 0}}; dijkstra(graph, 0); // Run Dijkstra from vertex 0 return 0; }